Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Rev ; 65: 101195, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38523032

RESUMO

B-cell lymphoma-2 (BCL-2) family proteins are fundamental regulators of the intrinsic apoptotic pathway which modulate cellular fate. In many haematological malignancies, overexpression of anti-apoptotic factors (BCL-2, BCL-XL and MCL-1) circumvent apoptosis. To address this cancer hallmark, a concerted effort has been made to induce apoptosis by inhibiting BCL-2 family proteins. A series of highly selective BCL-2 homology 3 (BH3) domain mimetics are in clinical use and in ongoing clinical trials for acute myeloid leukaemia (AML), chronic myeloid leukaemia (CML), chronic lymphocytic leukaemia (CLL), and multiple myeloma (MM). These inhibitors serve as promising candidates, both as single agents or in combination therapy to improve patient outcomes. In other diseases such as follicular lymphoma, efficacy has been notably limited. There are also clinical problems with BCL-2 family inhibition, including drug resistance, disease relapse, tumour lysis syndrome, and clinically relevant cytopenias. Here, we provide a balanced view on both the clinical benefits of BCL-2 inhibition as well as the associated challenges.


Assuntos
Antineoplásicos , Neoplasias Hematológicas , Leucemia Linfocítica Crônica de Células B , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Hematológicas/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
3.
Genome Biol ; 24(1): 152, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370129

RESUMO

BACKGROUND: Platelets and erythrocytes constitute over 95% of all hematopoietic stem cell output. However, the clonal dynamics of HSC contribution to these lineages remains largely unexplored. RESULTS: We use lentiviral genetic labeling of mouse hematopoietic stem cells to quantify output from all lineages, nucleate, and anucleate, simultaneously linking these with stem and progenitor cell transcriptomic phenotypes using single-cell RNA-sequencing. We observe dynamic shifts of clonal behaviors through time in same-animal peripheral blood and demonstrate that acute platelet depletion shifts the output of multipotent hematopoietic stem cells to the exclusive production of platelets. Additionally, we observe the emergence of new myeloid-biased clones, which support short- and long-term production of blood cells. CONCLUSIONS: Our approach enables kinetic studies of multi-lineage output in the peripheral blood and transcriptional heterogeneity of individual hematopoietic stem cells. Our results give a unique insight into hematopoietic stem cell reactivation upon platelet depletion and of clonal dynamics in both steady state and under stress.


Assuntos
Plaquetas , Hematopoese , Camundongos , Animais , Linhagem da Célula , Cinética , Células-Tronco Hematopoéticas , Células Clonais , Diferenciação Celular
4.
Blood ; 141(25): 3065-3077, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-36888932

RESUMO

Mitochondrial damage-associated molecular patterns (mtDAMPs) include proteins, lipids, metabolites, and DNA and have various context-specific immunoregulatory functions. Cell-free mitochondrial DNA (mtDNA) is recognized via pattern recognition receptors and is a potent activator of the innate immune system. Cell-free mtDNA is elevated in the circulation of trauma patients and patients with cancer; however, the functional consequences of elevated mtDNA are largely undefined. Multiple myeloma (MM) relies upon cellular interactions within the bone marrow (BM) microenvironment for survival and progression. Here, using in vivo models, we describe the role of MM cell-derived mtDAMPs in the protumoral BM microenvironment and the mechanism and functional consequence of mtDAMPs in myeloma disease progression. Initially, we identified elevated levels of mtDNA in the peripheral blood serum of patients with MM compared with those of healthy controls. Using the MM1S cells engrafted into nonobese diabetic severe combined immunodeficient gamma mice, we established that elevated mtDNA was derived from MM cells. We further show that BM macrophages sense and respond to mtDAMPs through the stimulator of interferon genes (STING) pathway, and inhibition of this pathway reduces MM tumor burden in the KaLwRij-5TGM1 mouse model. Moreover, we found that MM-derived mtDAMPs induced upregulation of chemokine signatures in BM macrophages, and inhibition of this signature resulted in egress of MM cells from the BM. Here, we demonstrate that malignant plasma cells release mtDNA, a form of mtDAMPs, into the myeloma BM microenvironment, which in turn activates macrophages via STING signaling. We establish the functional role of these mtDAMP-activated macrophages in promoting disease progression and retaining MM cells in the protumoral BM microenvironment.


Assuntos
Mieloma Múltiplo , Animais , Camundongos , Mieloma Múltiplo/metabolismo , Plasmócitos/patologia , Macrófagos/metabolismo , DNA Mitocondrial/genética , Progressão da Doença , Microambiente Tumoral
5.
Blood Adv ; 7(2): 256-268, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35622970

RESUMO

Rapid and effective leukocyte response to infection is a fundamental function of the bone marrow (BM). However, with increasing age, this response becomes impaired, resulting in an increased burden of infectious diseases. Here, we investigate how aging changes the metabolism and function of hematopoietic progenitor cells (HPCs) and the impact of the BM niche on this phenotype. We found that, in response to lipopolysaccharide-induced stress, HPC mitochondrial function is impaired, and there is a failure to upregulate the TCA cycle in progenitor populations in aged animals compared with young animals. Furthermore, aged mesenchymal stromal cells (MSCs) of the BM niche, but not HPCs, exhibit a senescent phenotype, and selective depletion of senescent cells from the BM niche, as well as treatment with the senolytic drug ABT-263, improves mitochondrial function of HPCs when stressed with lipopolysaccharide. In summary, age-related HPC metabolic dysfunction occurs indirectly as a "bystander phenomenon" in the aging BM niche and can be restored by targeting senescent MSCs.


Assuntos
Medula Óssea , Lipopolissacarídeos , Animais , Lipopolissacarídeos/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Células da Medula Óssea , Envelhecimento , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo
6.
Front Immunol ; 13: 1003006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211413

RESUMO

Normal bone marrow (BM) homeostasis ensures consistent production of progenitor cells and mature blood cells. This requires a reliable supply of nutrients in particular free fatty acids, carbohydrates and protein. Furthermore, rapid changes can occur in response to stress such as infection which can alter the demand for each of these metabolites. In response to infection the haematopoietic stem cells (HSCs) must respond and expand rapidly to facilitate the process of emergency granulopoiesis required for the immediate immune response. This involves a shift from the use of glycolysis to oxidative phosphorylation for energy production and therefore an increased demand for metabolites. Thus, the right balance of each dietary component helps to maintain not only normal homeostasis but also the ability to quickly respond to systemic stress. In addition, some dietary components can drive chronic inflammatory changes in the absence of infection or immune stress, which in turn can impact on overall immune function. The optimal nutrition for the best immunological outcomes would therefore be a diet that supports the functions of immune cells allowing them to initiate effective responses against pathogens but also to resolve the response rapidly when necessary and to avoid any underlying chronic inflammation. In this review we discuss how these key dietary components can alter immune function, what is their impact on bone marrow metabolism and how changes in dietary intake of each of these can improve the outcomes of infections.


Assuntos
Ácidos Graxos não Esterificados , Hematopoese , Medula Óssea , Carboidratos , Ácidos Graxos não Esterificados/metabolismo , Células-Tronco Hematopoéticas/metabolismo
7.
Front Oncol ; 12: 924567, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847950

RESUMO

Acute myeloid leukaemia (AML) is a highly proliferative cancer characterised by infiltration of immature haematopoietic cells in the bone marrow (BM). AML predominantly affects older people and outcomes, particularly in this difficult to treat population remain poor, in part due to inadequate response to therapy, and treatment toxicity. Normal haematopoiesis is supported by numerous support cells within the BM microenvironment or niche, including adipocytes, stromal cells and endothelial cells. In steady state haematopoiesis, haematopoietic stem cells (HSCs) primarily acquire ATP through glycolysis. However, during stress-responses HSCs rapidly transition to oxidative phosphorylation, enabled by mitochondrial plasticity. Historically it was thought that cancer cells preferentially used glycolysis for ATP production, however recently it has become evident that many cancers, including AML primarily use the TCA cycle and oxidative phosphorylation for rapid proliferation. AML cells hijack the stress-response pathways of their non-malignant counterparts, utilising mitochondrial changes to drive expansion. In addition, amino acids are also utilised by leukaemic stem cells to aid their metabolic output. Together, these processes allow AML cells to maximise their ATP production, using multiple metabolites and fuelling rapid cell turnover which is a hallmark of the disease. This review of AML derived changes in the BM niche, which enable enhanced metabolism, will consider the important pathways and discuss future challenges with a view to understanding how AML cells are able to hijack metabolic pathways and how we may elucidate new targets for potential therapies.

8.
Br J Cancer ; 127(1): 69-78, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35347324

RESUMO

INTRODUCTION: Progress in the knowledge of metabolic interactions between cancer and its microenvironment is ongoing and may lead to novel therapeutic approaches. Until recently, melanoma was considered a glycolytic tumour due to mutations in mitochondrial-DNA, however, these malignant cells can regain OXPHOS capacity via the transfer of mitochondrial-DNA, a process that supports their proliferation in-vitro and in-vivo. Here we study how melanoma cells acquire mitochondria and how this process is facilitated from the tumour microenvironment. METHODS: Primary melanoma cells, and MSCs derived from patients were obtained. Genes' expression and DNA quantification was analysed using Real-time PCR. MSC migration, melanoma proliferation and tumour volume, in a xenograft subcutaneous mouse model, were monitored through bioluminescent live animal imaging. RESULTS: Human melanoma cells attract bone marrow-derived stromal cells (MSCs) to the primary tumour site where they stimulate mitochondrial biogenesis in the MSCs through upregulation of PGC1a. Mitochondria are transferred to the melanoma cells via direct contact with the MSCs. Moreover, inhibition of MSC-derived PGC1a was able to prevent mitochondrial transfer and improve NSG melanoma mouse tumour burden. CONCLUSION: MSC mitochondrial biogenesis stimulated by melanoma cells is prerequisite for mitochondrial transfer and subsequent tumour growth, where targeting this pathway may provide an effective novel therapeutic approach in melanoma.


Assuntos
Melanoma , Células-Tronco Mesenquimais , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Melanoma/patologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Mitocôndrias/metabolismo , Biogênese de Organelas , Microambiente Tumoral
9.
J Clin Invest ; 132(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990402

RESUMO

The bone marrow (BM) microenvironment regulates acute myeloid leukemia (AML) initiation, proliferation, and chemotherapy resistance. Following cancer cell death, a growing body of evidence suggests an important role for remaining apoptotic debris in regulating the immunologic response to and growth of solid tumors. Here, we investigated the role of macrophage LC3-associated phagocytosis (LAP) within the BM microenvironment of AML. Depletion of BM macrophages (BMMs) increased AML growth in vivo. We show that LAP is the predominate method of BMM phagocytosis of dead and dying cells in the AML microenvironment. Targeted inhibition of LAP led to the accumulation of apoptotic cells (ACs) and apoptotic bodies (ABs), resulting in accelerated leukemia growth. Mechanistically, LAP of AML-derived ABs by BMMs resulted in stimulator of IFN genes (STING) pathway activation. We found that AML-derived mitochondrial damage-associated molecular patterns were processed by BMMs via LAP. Moreover, depletion of mitochondrial DNA (mtDNA) in AML-derived ABs showed that it was this mtDNA that was responsible for the induction of STING signaling in BMMs. Phenotypically, we found that STING activation suppressed AML growth through a mechanism related to increased phagocytosis. In summary, we report that macrophage LAP of apoptotic debris in the AML BM microenvironment suppressed tumor growth.


Assuntos
Medula Óssea , Leucemia Mieloide Aguda , Medula Óssea/metabolismo , DNA Mitocondrial/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Macrófagos/metabolismo , Fagocitose , Microambiente Tumoral
10.
Cell Mol Gastroenterol Hepatol ; 13(4): 1019-1039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34952202

RESUMO

BACKGROUND & AIMS: Inflammation is the hallmark of chronic liver disease. Metabolism is a key determinant to regulate the activation of immune cells. Here, we define the role of sirtuin 1 (SIRT1), a main metabolic regulator, in controlling the activation of macrophages during cholestatic liver disease and in response to endotoxin. METHODS: We have used mice overexpressing SIRT1, which we treated with intraperitoneal lipopolysaccharides or induced cholestasis by bile duct ligation. Bone marrow-derived macrophages were used for mechanistic in vitro studies. Finally, PEPC-Boy mice were used for adoptive transfer experiments to elucidate the impact of SIRT1-overexpressing macrophages in contributing to cholestatic liver disease. RESULTS: We found that SIRT1 overexpression promotes increased liver inflammation and liver injury after lipopolysaccharide/GalN and bile duct ligation; this was associated with an increased activation of the inflammasome in macrophages. Mechanistically, SIRT1 overexpression associated with the activation of the mammalian target of rapamycin (mTOR) pathway that led to increased activation of macrophages, which showed metabolic rewiring with increased glycolysis and broken tricarboxylic acid cycle in response to endotoxin in vitro. Activation of the SIRT1/mTOR axis in macrophages associated with the activation of the inflammasome and the attenuation of autophagy. Ultimately, in an in vivo model of cholestatic disease, the transplantation of SIRT1-overexpressing myeloid cells contributed to liver injury and fibrosis. CONCLUSIONS: Our study provides novel mechanistic insights into the regulation of macrophages during cholestatic disease and the response to endotoxin, in which the SIRT1/mTOR crosstalk regulates macrophage activation controlling the inflammasome, autophagy and metabolic rewiring.


Assuntos
Colestase , Hepatopatias , Animais , Endotoxinas , Humanos , Inflamassomos , Inflamação/complicações , Macrófagos/metabolismo , Mamíferos/metabolismo , Camundongos , Sirtuína 1/metabolismo , Serina-Treonina Quinases TOR
11.
Nat Commun ; 12(1): 7130, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880245

RESUMO

Acute infection is known to induce rapid expansion of hematopoietic stem cells (HSCs), but the mechanisms supporting this expansion remain incomplete. Using mouse models, we show that inducible CD36 is required for free fatty acid uptake by HSCs during acute infection, allowing the metabolic transition from glycolysis towards ß-oxidation. Mechanistically, high CD36 levels promote FFA uptake, which enables CPT1A to transport fatty acyl chains from the cytosol into the mitochondria. Without CD36-mediated FFA uptake, the HSCs are unable to enter the cell cycle, subsequently enhancing mortality in response to bacterial infection. These findings enhance our understanding of HSC metabolism in the bone marrow microenvironment, which supports the expansion of HSCs during pathogenic challenge.


Assuntos
Antígenos CD36/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Medula Óssea/metabolismo , Antígenos CD36/genética , Ciclo Celular , Glicólise , Interações entre Hospedeiro e Microrganismos , Lipopolissacarídeos/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Oxirredução , Infecções por Salmonella , Salmonella typhimurium
12.
Front Immunol ; 12: 744184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659241

RESUMO

Fusobacterium nucleatum is involved in the development of colorectal cancer (CRC) through innate immune cell modulation. However, the receptors of the interaction between F. nucleatum ssp. and immune cells remain largely undetermined. Here, we showed that F. nucleatum ssp. animalis interacts with Siglecs (sialic acid-binding immunoglobulin-like lectins) expressed on innate immune cells with highest binding to Siglec-7. Binding to Siglec-7 was also observed using F. nucleatum-derived outer membrane vesicles (OMVs) and lipopolysaccharide (LPS). F. nucleatum and its derived OMVs or LPS induced a pro-inflammatory profile in human monocyte-derived dendritic cells (moDCs) and a tumour associated profile in human monocyte-derived macrophages (moMϕs). Siglec-7 silencing in moDCs or CRISPR-cas9 Siglec-7-depletion of U-937 macrophage cells altered F. nucleatum induced cytokine but not marker expression. The molecular interaction between Siglec-7 and the LPS O-antigen purified from F. nucleatum ssp. animalis was further characterised by saturation transfer difference (STD) NMR spectroscopy, revealing novel ligands for Siglec-7. Together, these data support a new role for Siglec-7 in mediating immune modulation by F. nucleatum strains and their OMVs through recognition of LPS on the bacterial cell surface. This opens a new dimension in our understanding of how F. nucleatum promotes CRC progression through the generation of a pro-inflammatory environment and provides a molecular lead for the development of novel cancer therapeutic approaches targeting F. nucleatum-Siglec-7 interaction.


Assuntos
Antígenos de Diferenciação Mielomonocítica/imunologia , Neoplasias Colorretais/imunologia , Células Dendríticas/imunologia , Fusobacterium/imunologia , Lectinas/imunologia , Macrófagos/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Carcinogênese/imunologia , Carcinogênese/metabolismo , Linhagem Celular , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Células Dendríticas/metabolismo , Fusobacterium/metabolismo , Humanos , Imunomodulação/imunologia , Lectinas/metabolismo , Macrófagos/metabolismo
13.
Biomark Res ; 9(1): 35, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985565

RESUMO

Acute myeloid leukemia (AML) remains an incurable malignancy despite recent advances in treatment. Recently a number of new therapies have emerged for the treatment of AML which target BCL-2 or the membrane receptor CD38. Here, we show that treatment with Venetoclax and Daratumumab combination resulted in a slower tumor progression and a reduced leukemia growth both in vitro and in vivo. These data provide evidence for clinical evaluation of Venetoclax and Daratumumab combination in the treatment of AML.

16.
Front Oncol ; 10: 230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161723

RESUMO

Senescence is the irreversible arrest of cell proliferation that has now been shown to play an important role in both health and disease. With increasing age senescent cells accumulate throughout the body, including the bone marrow and this has been associated with a number of age-related pathologies including malignancies. It has been shown that the senescence associated secretory phenotype (SASP) creates a pro-tumoural environment that supports proliferation and survival of malignant cells. Understanding the role of senescent cells in tumor development better may help us to identify new treatment targets to impair tumor survival and reduce treatment resistance. In this review, we will specifically discuss the role of senescence in the aging bone marrow (BM) microenvironment. Many BM disorders are age-related diseases and highly dependent on the BM microenvironment. Despite advances in drug development the prognosis particularly for older patients remains poor and new treatment approaches are needed to improve outcomes for patients. In this review, we will focus on the relationship of senescence and hematological malignancies, how senescence promotes cancer development and how malignant cells induce senescence.

17.
Proc Natl Acad Sci U S A ; 116(49): 24610-24619, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31727843

RESUMO

Hematopoietic stem cells (HSCs) undergo rapid expansion in response to stress stimuli. Here we investigate the bioenergetic processes which facilitate the HSC expansion in response to infection. We find that infection by Gram-negative bacteria drives an increase in mitochondrial mass in mammalian HSCs, which results in a metabolic transition from glycolysis toward oxidative phosphorylation. The initial increase in mitochondrial mass occurs as a result of mitochondrial transfer from the bone marrow stromal cells (BMSCs) to HSCs through a reactive oxygen species (ROS)-dependent mechanism. Mechanistically, ROS-induced oxidative stress regulates the opening of connexin channels in a system mediated by phosphoinositide 3-kinase (PI3K) activation, which allows the mitochondria to transfer from BMSCs into HSCs. Moreover, mitochondria transfer from BMSCs into HSCs, in the response to bacterial infection, occurs before the HSCs activate their own transcriptional program for mitochondrial biogenesis. Our discovery demonstrates that mitochondrial transfer from the bone marrow microenvironment to HSCs is an early physiologic event in the mammalian response to acute bacterial infection and results in bioenergetic changes which underpin emergency granulopoiesis.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Infecções por Salmonella/patologia , Células Estromais/metabolismo , Animais , Células da Medula Óssea , Ativação Enzimática , Sangue Fetal , Glicólise , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Endogâmicos NOD , Camundongos Knockout , Infecções por Salmonella/metabolismo , Salmonella typhimurium , Células Estromais/citologia
18.
Cancer Res ; 79(9): 2285-2297, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30622116

RESUMO

Metabolic adjustments are necessary for the initiation, proliferation, and spread of cancer cells. Although mitochondria have been shown to move to cancer cells from their microenvironment, the metabolic consequences of this phenomenon have yet to be fully elucidated. Here, we report that multiple myeloma cells use mitochondrial-based metabolism as well as glycolysis when located within the bone marrow microenvironment. The reliance of multiple myeloma cells on oxidative phosphorylation was caused by intercellular mitochondrial transfer to multiple myeloma cells from neighboring nonmalignant bone marrow stromal cells. This mitochondrial transfer occurred through tumor-derived tunneling nanotubes (TNT). Moreover, shRNA-mediated knockdown of CD38 inhibits mitochondrial transfer and TNT formation in vitro and blocks mitochondrial transfer and improves animal survival in vivo. This study describes a potential treatment strategy to inhibit mitochondrial transfer for clinical benefit and scientifically expands the understanding of the functional effects of mitochondrial transfer on tumor metabolism. SIGNIFICANCE: Multiple myeloma relies on both oxidative phosphorylation and glycolysis following acquisition of mitochondria from its bone marrow microenvironment.See related commentary by Boise and Shanmugam, p. 2102.


Assuntos
Mieloma Múltiplo , Animais , Metabolismo Energético , Glicólise , Mitocôndrias , Fosforilação Oxidativa , Microambiente Tumoral
19.
Blood ; 133(5): 446-456, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30401703

RESUMO

Acute myeloid leukemia (AML) is an age-related disease that is highly dependent on the bone marrow (BM) microenvironment. With increasing age, tissues accumulate senescent cells, characterized by an irreversible arrest of cell proliferation and the secretion of a set of proinflammatory cytokines, chemokines, and growth factors, collectively known as the senescence-associated secretory phenotype (SASP). Here, we report that AML blasts induce a senescent phenotype in the stromal cells within the BM microenvironment and that the BM stromal cell senescence is driven by p16INK4a expression. The p16INK4a-expressing senescent stromal cells then feed back to promote AML blast survival and proliferation via the SASP. Importantly, selective elimination of p16INK4a+ senescent BM stromal cells in vivo improved the survival of mice with leukemia. Next, we find that the leukemia-driven senescent tumor microenvironment is caused by AML-induced NOX2-derived superoxide. Finally, using the p16-3MR mouse model, we show that by targeting NOX2 we reduced BM stromal cell senescence and consequently reduced AML proliferation. Together, these data identify leukemia-generated NOX2-derived superoxide as a driver of protumoral p16INK4a-dependent senescence in BM stromal cells. Our findings reveal the importance of a senescent microenvironment for the pathophysiology of leukemia. These data now open the door to investigate drugs that specifically target the "benign" senescent cells that surround and support AML.


Assuntos
Medula Óssea/patologia , Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Leucemia Mieloide Aguda/patologia , Microambiente Tumoral , Animais , Medula Óssea/metabolismo , Proliferação de Células , Técnicas de Cocultura , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/metabolismo , Superóxidos/metabolismo , Células Tumorais Cultivadas
20.
Int J Mol Epidemiol Genet ; 1(4): 350-7, 2010 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-21532844

RESUMO

While the world of genetics has been dominated over the last decade by technological advances allowing the identification of common variants underlying the major complex diseases, it is increasingly clear that other genetic mechanisms are also involved in genetic susceptibility and resistance to disease. One understudied contender is microchimerism (maternal and foetal), resulting from bi-directional transfer of cells across the placental barrier in pregnancy. Data from several diseases suggest that elevated levels of microchimerism are associated with autoimmunity. Theories differ however on the role of these cells in the disease process. Some suggest that they increase genetic susceptibility while others suggest that these cells are effectors of the immune response, or that they represent the target of the immune response while another proposes that elevated levels in disease are caused by ongoing repair of damaged tissue. Intriguingly these semi allogeneic cells are tolerated in healthy individuals, albeit at a lower level than in disease scenarios and recent studies in cancer suggest that foetal microchimeric cells may provide surveillance and repair. Many questions remain to be answered about this new avenue of genetics. It is likely that as technology advances our understanding of, and ability to manipulate these cells for therapeutic gain, will push forward new frontiers in medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA